

The Role of Biofilms in Retail Settings

Haley F. Oliver, Ph.D.

Associate Professor

Purdue University

Estimated annual human health burden of selected known foodborne diseases, United States

Pathogen	Illnesses	Deaths	Case-fatality
Campylobacter	1,322,137	119	0.1%
Salmonella	1,229,007	452	0.5%
E. coli O157:H7	96,534	31	0.5%
L. monocytogenes	1662	266	15.9%

Scallan, et al., Emerging Infectious Diseases, 2011

Listeria monocytogenes and Retail: A Challenge

- Ready-to-eat foods: a common source of listeriosis ¹
 - 83% of listeriosis cases from RTE deli meats from deli meats sliced at retail¹
 - Post-heat treatment contamination²
- L. monocytogenes prevalence in delis³
 - 14.2% of NFCS
 - 4.5% of FCS

Persistent and Transient Strains in Delis

- Strain: unique PFGE pulsotype
- Persistent strain: L. monocytogenes with PFGE pattern in the same store for ≥ 3 separate months
- Transient strain: L. monocytogenes with PFGE pattern in the same store for < 3 separate months

Prevalence of LM by Site

Prevalence of LM by Store

Deli case near raw meat

8-basin sink interior

1-basin sink interior

Non-food contact sites 3-basin sink exterior

1-basin sink exterior

Floor adjacent to drain

Floor/wall junction (3-basin)

Floor/wall junction (1-basin)

Deli case trays

Cold room rack **Cutting board**

Rewrap table

Counter

Deli drain

Deli floor

Squeegee

Trash can

Hose

Scale

Cart Wheel

Cold room floor

Cold room wall

Cold room drain

Standing water

Transfer Points Slicer knob Case handle

Slicer Deli case

0	
Y	
	Y

April NT NT

NT

NT

NT

NT

NT

NT

NT

CU-258.69

NT

NT

NT

NT

NT

CU-258,69

NT

NT

NT

NT

NT

May

NT

NT

NT

NT

NT

NT

NT

NT

NT

CU-258.69

NT

NT

NT

CU-258,69

NT

NT

NT

NT

NT

NT

NT

June

NT

NT

NT

NT

NT

NT

NT

NT

NT

CU-258.69

NT

NT

NT

CU-258,69

NT

NT

NT

NT

NT

CU-258.69

NT

CU-258,69

NT

July

CU-57,267

CU-258,69

NT

CU-258,69

CU-258,69

CU-258,69

CU-258,69

CU-258,69

CU-258,69

CU-258,69

CU-258.69

NT

CU-258,69

CU-258.69

August

CU-258.69

CU-258,333

CU-258,69

CU-295,329

CU-258.69

CU-258,69

CU-258,69

CU-258,69

September

CU-8.96

RDUE AGRICULTURE

October

NT

LM

LM

LM

CU-258,69

CU-258,69

CU-258.69

NT

CU-258.69

November December

CU-294,321

NT

CU-258.69

CU-258,69

CU-258,69

CU-258,69

CU-258,69

CU-258,69

CU-258.69

NT

CU-258,69

CU-258,69

CU-258,69

CU-258,69

CU-258,69

CU-258,69

CU-258,69

CU-258.69

CU-258,69

Phenotypic Characteristics of LM

- Biofilms
 - Protect LM against environmental stress⁴
 - Form on various food contact surfaces⁵
 - Potential cause of contamination⁶
 - Influenced by: strains, properties of surfaces, temperatures, growth media, and the presence of other microorganisms^{7,8}

Phenotypic Characteristics of L. monocytogenes Retail Isolates

- Hypothesis:
 - L. monocytogenes persistent strains are better at forming biofilms
 - There is relationship between biofilm formation and sanitizer tolerance
- Goals of this Work:
 - To assess the ability of 23 persistent strains and 73 transient strains
 - Attachment to abiotic surfaces (indicator of biofilm formation)
 - Sanitizer tolerance
 - Relationship between attachment ability and sanitizer tolerance

Attachment Assay

Adapted from Lemon et al. 2007, Chen et al. 2013

Persistent Strains Attach to Abiotic Surfaces Better than Transient Strains

Statistical Analysis:

Time (Day)

Generalized linear model (GLM): Log(OD₅₉₀)= "day", "type", and "day*type" LS Means to determine p-value for day*type

^{*} Denotes significance at P<0.05

Isolates Within a Strain Display Significant Variation in Attachment Ability

Sanitizer Tolerance Assay

No Significant Difference between Persistent and Transient Strains

Concentration of TSB

Statistical Analysis:

GLIMMIX: tolerance = "nutrient", "type", and "nutrient*type"

LS Means to determine p-value for "nutrient*type"

* Denotes significance at P<0.05

Isolates Within a Strain Display Significant Variation in Sanitizer Tolerance

strains

Attachment Ability is Negatively Correlated with Sanitizer Tolerance after Long-term Incubation in Nutrient Rich Conditions

Statistical Analysis:

Linear regression model: $Log(OD_{590})$ (on different day) = sanitizer tolerance (under different nutrient conditions)

^{*} Denotes significance at P<0.05

Conclusion

- Persistent LM strains were better at attaching to abiotic surfaces (PVC) than transient strains
- Persistent strains and transient strains displayed similar levels of sanitizer tolerance
 - LM was more tolerant to QACs under nutrient rich conditions than in nutrient limiting conditions
- A negative correlation was found between enhanced cell attachment on day 5 and sanitizer tolerance under nutrient rich conditions
- Both attachment ability and sanitizer tolerance varied widely among isolates of the same strain

Key questions:

 What proportion of isolates in the retail delienvironment are virulence attenuated?

- Food contact surfaces vs non-food contact surfaces?
- Persistence of virulence attenuated mutants compared to WT strains?

Internalin A & Invasion

Virulence Potential of L. monocytogenes from delis

- Up to 45% of isolates from RTE foods have inIA premature stop codons
 - Strongly decreased invasiveness of mutant (<10% of WT) in cell culture
 - Rarely found in isolates from clinical cases

PMSC Screen

- 981 isolates (Phases I-V)
 - Test for full length internalin A vs PMSC
 - 18 known inIA PMSCs
 - PCR-based assay:

Single nucleotide extension PCR

Capillary electrophoresis

Van Stelten et al, 2008; Van Stelten et al, 2010

inIA PMSCs are Rare Among Deli Isolates

- 15/981 isolates had inIA PMSCs
- ~5% of FCS isolates contained PMSCs
 - 8/15 PMSCs associated with FCS isolates
- <1% of NFCS isolates contained PMSCs

inIA PMSCs Not Common in Delis with High L. monocytogenes Prevalence

- PMSCs more common in moderate prevalence delis (1-10% average LM+ environmental samples)
 - 11.9% of isolates vs ~2% of isolates from high prevalence stores
 - 8/15 PMSC+ isolates from moderate prevalence delis
- PMSCs significantly associated with FCS isolates from moderate prevalence stores
- PMSCs always found in transient isolates

mary of isolates with RMSCAGRICULTURE

Store Number ^a	LM Prevalence ^b	Total PMSC ^d	FCS PMSC ^f	NFCS PMSC ^h	PFGE Patterns of PMSC+ isolates ⁱ	PMSC Locations ^j	PMSC Type ^k		
Store 2	High	2	0	2	CU-82-215	Floor/wall junction under 1- basin sink (NFCS)	PMSC-4 PMSC-3		
					CU-341-79	Cold room drain (NFCS)			
Store 16	High	1	0	0	CU-100-140	Deli case handle (TP)	PMSC-4		
Store 23	High	3	2	1	CU-296-330	1-basin deli sink interior (FCS)	PMSC-4		
					CU-82-215	Standing water (NFCS)			
Store 4	Moderate	1	0	1	CU-80-218	Trash cans (NFCS)	PMSC-4		
Store 8	Moderate	1	1	0	CU-200-227	1-basin deli sink interior (FCS)	PMSC-4		
Store 11	Moderate	1	1	0	CU-200-227	3-basin deli sink interior (FCS)	PMSC-4		
Store 17	Moderate	1	0	1	CU-81-215	Trash cans (NFCS)	PMSC-4		
Store 19	Moderate	1	1	0	CU-100-140	Countertop (FCS)	PMSC-3		
Store 20	Moderate	1	1	0	CU-200-227	3-basin deli sink interior (FCS)	PMSC-4		
Store 22	Moderate	2	1	1	CU-180-231 CU-258-332	Deli case (FCS) Deli floor (NFCS)	PMSC-4		
Store 13	Low	1	1	0	CU-200-227	Cold room racks (FCS)	PMSC-4		
	Total:	11	7	4					
Simmons et al, 2014; Wang et al, (2015)									

Persistent Isolates Are More Likely to Form Biofilms and Less Likely to Have *inIA* PMSCs

- Persistent L. monocytogenes strains may be better adapted for survival in retail delis through biofilm formation
- Biofilm-forming isolates are less likely to have virulenceattenuating mutations
 - Risk for cross-contamination of surfaces

United States Department of Agriculture Food Safety and Inspection Service

References

- FSIS, FDA-FSIS Quantitative Risk Assessment for Listeria monocytogenes in Ready-to-Eat Foods. 2003.
- 2. Tompkin, R. Bruce, et al., Guidelines to prevent post-processing contamination from Listeria monocytogenes. Dairy Food and Environmental sanitation 19 (1999): 551-603.
- 3. Simmons, C., M. Stasiewicz, S. Roof, S. Hammons, E. Wright, S. Worchoki, M. Wiedmann, and H. and Oliver. unpublished. Prevalence and Persistence of *L. monocytogenes* in Retail Delis in Three States. *In preparation for submission to J Food Prot*.
- 4. Djordjevic, D., M. Wiedmann, and L. McLandsborough. 2002. Microtiter plate assay for assessment of *Listeria monocytogenes* biofilm formation. *Applied and Environmental Microbiology*. 68:2950-2958.
- 5. Truelstrup Hansen, L., and B. F. Vogel. 2011. Desiccation of adhering and biofilm *Listeria monocytogenes* on stainless steel: Survival and transfer to salmon products. *International Journal of Food Microbiology*. 146:88-93.
- 6. Tompkin, R. B. 2002. Control of *Listeria monocytogenes* in the food-processing environment. *Journal of Food Protection*®. 65:709-725.
- 7. Palmer, J., S. Flint, and J. Brooks. 2007. Bacterial cell attachment, the beginning of a biofilm. *Journal of industrial microbiology & biotechnology*. 34:577-588.
- 8. Pan, Y., F. Breidt, and S. Kathariou. 2006. Resistance of *Listeria monocytogenes* biofilms to sanitizing agents in a simulated food processing environment. *Applied and Environmental Microbiology*. 72:7711-7717.
- 9. Fraise, A., J.-Y. Maillard, and S. Sattar. 2012. Russell, Hugo and Ayliffe's Principles and Practice of Disinfection, Preservation and Sterilization. John Wiley & Sons.
- 10. Romanova, N., P. Wolffs, L. Brovko, and M. Griffiths. 2006. Role of efflux pumps in adaptation and resistance of *Listeria monocytogenes* to benzalkonium chloride. *Applied and environmental microbiology*. 72:3498-3503.
- 11. Tezel, U., J. A. Pierson, and S. G. Pavlostathis. 2006. Fate and effect of quaternary ammonium compounds on a mixed methanogenic culture. *Water research*. 40:3660-3668.
- 12. Lunden, J.M., Miettinen M.K., Autio T.J. and Korkeala H.J. 2000. Persistent *Listeria monocytogenes* strains show enhanced adherence to food contact surface after short contact times. *Journal of Food Protection.* **63**(9): p. 1204-1207
- 13. Borucki, M.K, Peppin J.D., White D., Loge F. and Call D.R. 2003. Variation in biofilm formation among strains of *Listeria*27/43 monocytogenes. Applied and Environmental Microbiology. **69**(12): p. 7336-7342

References

- Endrikat, S., D. Gallagher, et al. (2010). "A comparative risk assessment for Listeria monocytogenes in prepackaged versus retail-sliced deli meat." Journal of Food Protection® 73(4): 612-619.
- Gokulan, K., S. Khare, et al. (2013). "Impact of plasmids, including those encodingVirB4/D4 type IV secretion systems, on Salmonella enterica serovar Heidelberg virulence in macrophages and epithelial cells." PLoS One 8(10): e77866.
- Hammons, S. R., Wang, J., Ray, A.J., Oliver H.F. (unpublished). "Evaluation of deep clean SSOP as a Listeria monocytogenes control strategy in retail delis."
- Nightingale, K. K., R. A. Ivy, et al. (2008). "inIA premature stop codons are common among Listeria monocytogenes isolates from foods and yield virulence-attenuated strains that confer protection against fully virulent strains." Appl Environ Microbiol 74(21): 6570-6583.
- Nightingale, K. K., K. Windham, et al. (2005). "Select Listeria monocytogenes subtypes commonly found in foods carry
 distinct nonsense mutations in inIA, leading to expression of truncated and secreted internalin A, and are associated with a
 reduced invasion phenotype for human intestinal epithelial cells." Appl Environ Microbiol 71(12): 8764-8772.
- Scallan, E., R. M. Hoekstra, et al. (2011). "Foodborne illness acquired in the United States--major pathogens." Emerg Infect Dis 17(1): 7-15.
- Simmons, C., M. J. Stasiewicz, et al. (2014). "Listeria monocytogenes and Listeria spp. contamination patterns in retail delicatessen establishments in three U.S. states." J Food Prot 77(11): 1929-1939.
- Van Stelten, A. and K. K. Nightingale (2008). "Development and implementation of a multiplex single-nucleotide polymorphism genotyping assay for detection of virulence-attenuating mutations in the Listeria monocytogenes virulence-associated gene in IA." Appl Environ Microbiol 74(23): 7365-7375.
- Van Stelten, A., J. M. Simpson, et al. (2010). "Revelation by single-nucleotide polymorphism genotyping that mutations leading to a premature stop codon in inIA are common among Listeria monocytogenes isolates from ready-to-eat foods but not human listeriosis cases." Appl Environ Microbiol 76(9): 2783-2790.